Magnetic Resonance Core Facility

Methodological publications


•Vitouš J, Jiřík R, Stračina T, et al. T1 mapping of myocardium in rats using self-gated golden-angle acquisition. Magn Reson Med. 2024;91(1):368-380. doi:10.1002/mrm.29846


•Starčuková J, Stefan D, Graveron-Demilly D. Quantification of short echo time MRS signals with improved version of QUantitation based on quantum ESTimation algorithm. NMR Biomed. 2023;36(11). doi:10.1002/nbm.5008


•Shamaei A, Starcukova J, Starcuk Z. Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data. Comput Biol Med. 2023;158. doi:10.1016/j.compbiomed.2023.106837


• Shamaei A, Starcukova J, Pavlova I, Starcuk Z. Model-informed unsupervised deep learning approaches to frequency and phase correction of MRS signals. Magn Reson Med. 2023;89(3):1221-1236. doi:10.1002/mrm.29498


•Shamaei A, Starcukova J, Rizzo R, Starcuk Z. Water removal in MR spectroscopic imaging with Casorati singular value decomposition. Magn Reson Med. 2024;91(4):1694-1706. doi:10.1002/mrm.29959


•Shalom ES, Kim H, van der Heijden RA, et al. The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge. Magn Reson Med. Published online 2023. doi:10.1002/mrm.29909


•Shamaei A, Starčuková J, Starčuk Z. A Wavelet Scattering Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation. doi:10.5220/0010318502680275


•Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain 1H MR spectra: Experts’ consensus recommendations. NMR Biomed. 2021;34(5):e4393. doi:10.1002/NBM.4393


•Simicic D, Rackayova V, Xin L, et al. In vivo macromolecule signals in rat brain 1H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T2 relaxation times. Magn Reson Med. 2021;86(5):2384-2401. doi:10.1002/MRM.28910


•Bachrata B, Strasser B, Bogner W, et al. Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles. Magn Reson Med. 2021;85(3):1379-1396. doi:10.1002/mrm.28519


•Kořínek R, Pfleger L, Eckstein K, et al. Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. Front Phys. 2021;9:665562. doi:10.3389/fphy.2021.665562


•Latta P, Starčuk Z, Kojan M, et al. Simple compensation method for improved half-pulse excitation profile with rephasing gradient. Magn Reson Med. 2020;84(4):1796-1805. doi:10.1002/MRM.28233


•Bachrata B, Strasser B, Bogner W, et al. Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles. Magn Reson Med. 2021;85(3):1379-1396. doi:10.1002/MRM.28519


•Kořínek R, Gajdošík M, Trattnig S, Starčuk Z, Krššák M. Low-level fat fraction quantification at 3 T: comparative study of different tools for water-fat reconstruction and MR spectroscopy. MAGMA. 2020;33(4):455-468. doi:10.1007/S10334-020-00825-9


•Jiřík R, Taxt T, Macíček O, et al. Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Magn Reson Imaging. 2019;62(May):46-56. doi:10.1016/j.mri.2019.05.024


•Bartoš M, Rajmic P, Šorel M, Mangová M, Keunen O, Jiřík R. Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization. Magn Reson Med. 2019;82(6):2257-2272. doi:10.1002/MRM.27874


•Walner H, Bartoš M, Mangová M, et al. Iterative methods for fast reconstruction of undersampled dynamic contrast-enhanced MRI data. IFMBE Proc. 2019;68(1):267-271. doi:10.1007/978-981-10-9035-6_48


•MacÍček O, Jiřík R, Mikulka J, et al. Time-Efficient Perfusion Imaging Using DCE-and DSC-MRI. Measurement Science Review. 2018;18(6):262-271. doi:10.1515/MSR-2018-0036


•Latta P, Starčuk Z, Gruwel MLH, et al. Influence of k-space trajectory corrections on proton density mapping with ultrashort echo time imaging: Application for imaging of short T2 components in white matter. Magn Reson Imaging. 2018;51:87-95. doi:10.1016/J.MRI.2018.04.020


•Starčuk Z, Starčuková J. Quantum-mechanical simulations for in vivo MR spectroscopy: Principles and possibilities demonstrated with the program NMRScopeB. Anal Biochem. 2017;529:79-97. doi:10.1016/J.AB.2016.10.007


•Stangeland M, Engjom T, Mezl M, et al. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic - Contrast-Enhanced Ultrasound. Ultrasound Int Open. 2017;3(3):E99-E106. doi:10.1055/S-0043-110475


•Marcon P, Bartusek K, Dohnal P. Calculating magnetic susceptibility from the reaction field in the vicinity of differently shaped samples. Progress in Electromagnetics Research Symposium. 2017;2017-November:1618-1622. doi:10.1109/PIERS-FALL.2017.8293393


•Mangová M, Rajmic P, Jiřík R. Dynamic magnetic resonance imaging using compressed sensing with multi-scale low rank penalty. 2017 40th International Conference on Telecommunications and Signal Processing, TSP 2017. 2017;2017-January:780-783. doi:10.1109/TSP.2017.8076094


• (ISMRM 2017) Joint DCE- and DSC-MRI processing using the Gradient correction model. Accessed May 9, 2023. https://archive.ismrm.org/2017/1901.html


•Latta P, Starčuk Z, Gruwel MLH, Weber MH, Tomanek B. K-space trajectory mapping and its application for ultrashort Echo time imaging. Magn Reson Imaging. 2017;36:68-76. doi:10.1016/J.MRI.2016.10.012


•Korinek R, Bartusek K, Starcuk Z. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging. Magn Reson Imaging. 2017;37:164-170. doi:10.1016/J.MRI.2016.11.015


•Jablonski M, Starcukova J, Starcuk Z. Resampling in magnetic resonance spectroscopy-A less model-dependent quantitation quality assessment method. 2017 11th International Conference on Measurement, MEASUREMENT 2017 - Proceedings. Published online July 18, 2017:193-196. doi:10.23919/MEASUREMENT.2017.7983569


•Jabłoński M, Starčuková J, Starčuk Z. Processing tracking in jMRUI software for magnetic resonance spectra quantitation reproducibility assurance. BMC Bioinformatics. 2017;18(1). doi:10.1186/S12859-017-1459-5


•Vlachova Hutova E, Bartusek K, Dohnal P, Fiala P. The influence of a static magnetic field on the behavior of a quantum mechanical model of matter. Measurement (Lond). 2017;96:18-23. doi:10.1016/J.MEASUREMENT.2016.10.023


•Fiala P, Bartusek K, Kriz T, Dohnal P, Vlachova Hutova E. The EMG effects of a static magnetic field on the behavior of organic or live materials. Progress in Electromagnetics Research Symposium. 2017;2017-November:1623-1629. doi:10.1109/PIERS-FALL.2017.8293394


•Fiala P, Bartušek K, Bachorec T, Dohnal P. A numerical model of the spiral gradient magnetic field in selected water samples. Progress in Electromagnetics Research Symposium. 2017;2017-November:961-965. doi:10.1109/PIERS-FALL.2017.8293272


•Bartušek K, Marcoň P, Fiala P, Máca J, Dohnal P. The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water. Water 2017, Vol 9, Page 664. 2017;9(9):664. doi:10.3390/W9090664


•Kratochvíla J, Jiřík R, Bartoš M, Standara M, Starčuk Z, Taxt T. Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI. Magn Reson Med. 2016;75(3):1355-1365. doi:10.1002/MRM.25619


•Schäfer S, Nylund K, Sævik F, et al. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis. Comput Biol Med. 2015;63:229-237. doi:10.1016/J.COMPBIOMED.2014.09.014


•Mezl M, Jirik R, Harabis V, et al. Absolute ultrasound perfusion parameter quantification of a tissue-mimicking phantom using bolus tracking [Correspondence]. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(5):983-987. doi:10.1109/TUFFC.2014.006896


•Dvořák P, Bartušek K, Kropatsch WG, Smékal Z. Automated Multi-Contrast Brain Pathological Area Extraction from 2D MR Images. Journal of Applied Research and Technology JART. 2015;13(1):58-69. doi:10.1016/S1665-6423(15)30005-5


•Nespor D, Bartusek K, Dokoupil Z. Comparing saddle, slotted-tube and parallel-plate coils for magnetic resonance imaging. Measurement Science Review. 2014;14(3):171-176. doi:10.2478/MSR-2014-0023


•Dvořák P, Bartušek K, Smékal Z. Unsupervised pathological area extraction using 3D T2 and FLAIR MR images. Measurement Science Review. 2014;14(6):357-364. doi:10.2478/MSR-2014-0049


•Bartoš M, Jiřík R, Kratochvíla J, Standara M, Starčuk Z, Taxt T. The precision of DCE-MRI using the tissue homogeneity model with continuous formulation of the perfusion parameters. Magn Reson Imaging. 2014;32(5):505-513. doi:10.1016/J.MRI.2014.02.003


•Jiřik R, Nylund K, Gilja OH, et al. Ultrasound perfusion analysis combining bolus-tracking and burst-replenishment. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(2):310-319. doi:10.1109/TUFFC.2013.2567


•Harabis V, Kolar R, Mezl M, Jirik R. Comparison and evaluation of indicator dilution models for bolus of ultrasound contrast agents. Physiol Meas. 2013;34(2):151-162. doi:10.1088/0967-3334/34/2/151


•Dvořák P, Kropatsch WG, Bartušek K. Automatic brain tumor detection in T2-weighted magnetic resonance images. Measurement Science Review. 2013;13(5):223-230. doi:10.2478/MSR-2013-0034