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Abstract We present theoretical results related to the op-

tical binding of two nanoparticles (NPs) in a standing wave

created by a retro-reflected wide Gaussian beam. Recent

experimental results demonstrated that this geometry en-

ables easy confinement and spatial self-arrangement of NPs.

Since the NPs are not usually of the same size, we investigate

the influence of variations in NPs size on their stable spatial

confinement in this type of optical trap.
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With the ongoing progress in the field of nanotechnology,

controlled transport, manipulation and self-arrangement of

individual NPs attract increased attention. Optical ma-

nipulation offers a way how to reach this goal in a con-

tactless way even inside areas without mechanical access.

Since the first demonstrations of spatial confinement of

NPs using optical tweezers [1, 2] or a standing wave [3],

optical manipulation techniques progressed tremendously

[4–6] and the following techniques were mastered: spatial

localization of NPs of various shapes and compositions [7–

22], rotation of NPs [21, 23–26], NPs trapping in vacuum

and their laser cooling [27, 28], NPs optical conveyor belts

[29–31] and NPs optical separations [32–34].

Since the classical optical trap is at least one order of

magnitude larger comparing to the NP size, several NPs

can be illuminated at the same time. Illuminated NPs start

to interact with each other via scattered light (so-called

optical binding)[35] and tend to self-arrange into optically

bound structures [36–47]. It was believed that optical

binding between NPs is too weak to be observed, but recent

results [48, 49] demonstrated that optical binding between

metal NPs is much stronger and enables experimental ob-

servations. In this paper, we focus on a theoretical study

how tiny deviations in the sizes of both NPs influence the

stability of the formed optically bound structure in the

geometry shown in Fig. 1.

1 Methods

Our calculations were performed using our own code based

on the Generalized Lorenz–Mie theory with an extension to

more spherical particles [50, 51]. Since we consider wide

incident beam, the beam-shape-coefficients for the GBs

were calculated according to the (first order) localized

approximation [52] which corresponds to the first order

Barton’s correction of the GB [53]. For the numerical

calculations in this paper, we consider the following pa-

rameters: GB waist radius w0 ¼ 6:3 lm, total power in the

incident GB at the sample plane P ¼ 100 mW which gives

optical intensity at the GB waist I0 ¼ 2P=ðpw2
0Þ ¼ 1:6

mW/lm2 and field intensity in GB waist E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P=ðpw2
0nexte0cÞ

p

¼ 0:95 V/lm, refractive index of the

surrounding medium (water) nm ¼ 1:33, refractive index of

Au np ¼ 0:285þ i7:35 at the vacuum wavelength k0 ¼
1064 nm [54].

2 Nanoparticles of equal sizes

Since the NPs are of the same size, the problem is sym-

metrical and we expect that both NPs are symmetrically

displaced with respect to the beam axis (yc ¼ 0). We
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changed the NPs diameter and inter-particle separation

(IPS) Dy and we looked for stable configurations of both

NPs if they stay in the same xy plane. The equilibrium

points were determined by zero values of all forces acting

upon NP 1 and 2 along x; y; z axes. Further, at these points

we evaluated the force stiffness matrix [55]

Kij ¼ �
oFi

oqj

; ð1Þ

F~ ¼ ðF1x;F1y;F1z;F2x;F2y;F2zÞ; ð2Þ

q~¼ ðx1; y1; z1; x2; y2; z2Þ; ð3Þ

using numerical derivatives equal to the 1st order central

difference. The stable configurations must have all six

eigenvalues of K, corresponding to six different vibrational

modes, positive (in our sign convention).

Figure 2 shows the force F2y acting upon the right NP. The

stability analysis revealed that stable configurations occur

only for smaller NPs trapped at the intensity maximum

(magenta curves) and separated from each other by a number

close to an integer multiple of the trapping wavelength in the

medium, which corresponds to the observations [36, 48].

Larger NPs can be localized at the intensity minimum along z

axis [56] but do not form stable optically bound structure

(results not shown). Figure 2 also provides information about

the magnitudes of the binding forces between NPs, extremal

values are close to 1 pN for the considered parameters.

Figure 3 presents the results of the stability analysis

along the stable configurations denoted by magenta curves

in Fig. 2 for each of six vibrational eigenmodes. The

stiffnesses jz"" and jz"# (green) are very high and both

modes can not be distinguished because the intensity

Fig. 1 (Color online) Geometry of the problem. Top view wide GB

polarized along x axis illuminates two spherical NPs generally

displaced asymmetrically from the beam axis. Side view The beam

comes from the top against the direction of z axis, reflects backwards

on the mirror and interferes with the incident beam forming a standing

wave with fringes in the xy plane separated by one half of the trapping

wavelength km=2. The NPs are confined in the intensity maximum in

the plane xy
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Fig. 2 (Color online) Maps of

the optical force F2y acting upon

the right NP for different NP

sizes and IPSs. The NPs are

trapped only at the maximum of

the interference fringes. The

magenta sections denote F2y ¼
0 with stable configurations

along all axes
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gradient of the standing wave localizes the NPs very well

within the single fringe (see RMSz"" and RMSz"# values)

and their optical binding does not change this situation

significantly. The stiffnesses jx"" and jx"# parallel to the

beam polarization (red) are weak and almost the same for

the smallest NPs. However they differ by several orders for

larger NPs and get close to jz"# demonstrating strong in-

fluence of optical binding. Stiffnesses along y axis are more

interesting, jy"" is very low and close to jx"" because it is

mainly done by the lateral intensity gradient of GB.

However RMSy"" for considered power is close to Dy and

thus, the optically bound structure would exist for higher

trapping power. In contrast jy"# approaches and even ex-

ceeds jz"# for larger NPs with RMSy"# � Dy. These results

are in qualitative coincidence with astonishing results of

Demergis [48].

Nanoparticles of different sizes. Analyzing this case, we

assumed that the NPs are still aligned in xy plane and along

y axis but they are not equally displaced from the beam

axis. For the calculations we use the following parameters:

IPS is done as Dy ¼ y2 � y1 (see Fig. 1) and the shift of the

NPs’ geometry center from the beam axis we denote as

yc ¼ ðy1 þ y2Þ=2.

NPs diameters d1; d2 are parametrized by a diameter d0,

and diameters ratio p ¼ d1=d2 with d1 ¼ d0
ffiffiffi

p
p

,

d2 ¼ d0=
ffiffiffi

p
p

. It is always assumed that the bigger NP is

placed on the left (i.e. z1\z2) having index 1, therefore, the

parameter p is slightly larger than 1.
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Fig. 3 (Color online) The left

column shows the real values of

the eigenvalues of Kij from Eq.

1 corresponding to the optical

stiffness jij along i axis at the

position of the right particle for

each of parallel and antiparallel

modes j ¼"" and j ¼"#,
respectively, denoted below the

plots. The right column shows

the corresponding root-mean-

square displacements (RMS) of

the right NP from the stable

position for all six possible

oscillations of both NPs. Each

row corresponds to one stable

IPS Dy. Red/blue/green colors

denote vibrations along x=y=z

axis, full/open circles mark

parallel/antiparallel vibration
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For several combinations of NPs diameters in the ranges

d0 ¼160–360 nm and p ¼1–1.1 we have calculated the

optical forces F1 and F2 acting upon NPs 1 and 2, re-

spectively, as functions of Dy, yc, z, at x ¼ 0. The equi-

librium points were found from the calculated grid using a

standard Matlab contouring algorithm which interpolates

data between the grid points with higher than linear poly-

nom. In the equilibrium points we evaluated the force

stiffnesses according to Eq. 1 and determined the stable

configurations.

Figure 4 reveals stable configurations found within the

inspected range of NP parameters and geometry. With in-

creasing difference in NP diameters the NPs are more

displaced from the symmetrical configuration with respect

to the beam axis. The larger IPS, the less the NPs are

displaced from the beam axis. In majority of the studied

cases, the NPs are shifted towards the side of the larger NP.

Exceptions occur for the largest studied NPs that are

shifted towards the side of the smaller NP and for the

smallest NPs that are deviated to both sides depending on

their IPS.

The presented results indicate that stable optically bound

structures can be even formed from metal NPs of different

sizes and one could deduce the ratio of their diameters from

the deviation of a pair of optically bound NPs from the

beam axis.
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Fig. 4 (Color online) Stable

configurations of two Au NPs of

different radii along y axis.

Eleven different marker sizes

correspond to the growing ratio

p ¼ 1� 1:1 in steps 0.1.

Schemes on the bottom

illustrates three possible

configurations of the NPs with

respect to the beam axis (and in

the fringe intensity maximum)

and correspond to the three

regions in the plots separated by

dashed lines
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10. J. Trojek, L. Chvátal, P. Zemánek, J. Opt. Soc. Am. A 29, 1224

(2012)

11. J.K.C. Toussaint, M. Liu, M. Pelton, J. Pesic, M.J. Guffey, P.

Guyot-Sionnest, N.F. Scherer, Opt. Express 15, 12017 (2007)

12. M. Pelton, M. Liu, H. Kim, G. Smith, P. Guyot-Sionnest, N.

Scherer, Opt. Lett. 31, 2075 (2006)

13. C. Hosokawa, H. Yoshikawa, H. Masuhara, Phys. Rev. E 70,

061410 (2004)

14. S. Ito, H. Yoshikawa, H. Masuhara, Appl. Phys. Lett. 80, 482

(2002)

15. M. Dienerowitz, M. Mazilu, P.J. Reece, T.F. Krauss, K. Dho-

lakia, Opt. Express 16, 4991 (2008)

16. M. Righini, A.S. Zelenina, C. Girard, R. Quidant, Nat. Phys. 3,

477 (2007)
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